noncommitative Shapes a conference in honour of Michel Van den Bergh

University of Antwerp September 12-16, 2022

Mirror Symmetry for Adjoint Orbits

・ 同 ト ・ ヨ ト ・ ヨ ト …

E

Mirror Symmetry for Adjoint Orbits

Elizabeth Terezinha Gasparim

16 September 2022

Elizabeth Gasparim Mirror Symmetry for Adjoint Orbits

< 3 b

Geometric Mirror Symmetry

Geometric Mirror Symmetry

Example 1: Smooth Elliptic Curve

$$h^{1,1} = 1$$

 $h^{1,0} = 1$ $h^{0,1} = 1$

 $h^{0,0} = 1$

<ロ> (四) (四) (三) (三) (三)

Example 2: Hodge Diamond of a K3 Surface

回下 イヨト イヨト

Ξ

A Calabi Yau threefold and its mirror

Candelas, de la Ossa, Green, Parkes (1991)

토 > 토

Homological Mirror Symmetry (Kontsevich ICM 1994)

$\{symplectic geometry\} \longleftrightarrow \{algebraic geometry\}$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Different Mirrors

・ロト ・回ト ・ヨト ・ヨト … ヨ

Bad Mirrors

・ロト ・回ト ・ヨト ・ヨト … ヨ

Vampire

イロト イロト イヨト イヨト 三日

For every LG model (Y, f) there exists a (subvariety of) a projective variety X satisfying the categorical equivalence

 $Fuk(Y, f) = D^b(Coh X)$

Conjectured by Kontsevich at ICM 1994.

イヨトィヨト

For us a Landau–Ginzburg model is a symplectic or a complex manifold Y together with a complex function $f: Y \to \mathbb{C}$ called the superpotential.

(日本) (日本) (日本)

Э

Landau–Ginzburg models

Symplectic families with 1 dimensional parameter space and only Morse type singularities.

Especially well behaved LG models: Lefschetz fibrations!

<回と < 回と < 回と

E

Let Y be a complex variety. A smooth function $f: Y \to \mathbb{C}$ (or $f: Y \to \mathbb{P}^1$) is a Topological Lefschetz fibration if:

 f has finitely many critical points of (holomorphic) Morse type so that around each critical point

$$f(z_0,\ldots,z_n)\simeq z_0^2+\cdots+z_n^2.$$

• $f|_{Y-\{\text{singular fibres}\}}$ is locally trivial.

• (1) • (

A a topological Lefschetz fibration $f: Y \to \mathbb{C}$ on a symplectic manifold (Y, ω) is a symplectic Letschetz fibration if:

- For every regular value p ∈ C, the level Y_p is a symplectic submanifold of Y, and
- for each singular point Q_i the symplectic form ω_{Qi} is non degenerate over the tangent cone of Y_{Qi} at Q_i.

(日本) (日本) (日本)

Donaldson proved that every symplectic 4 manifold has the structure of Lefschetz pencil.

Blow-up the base locus of the pencil to obtain a TLF.

イヨトイヨト

TLFs from pencils

Modify a Lefschetz pencil by blowing up the base locus transforming it to a TLF.

Figure: Pencil to fibration.

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

Let G be a complex semisimple Lie group with Lie algebra g and Cartan subalgebra \mathfrak{h} . Given the Hermitian form \mathcal{H} on g, define the symplectic form on g by

$$\omega(X,Y) = \operatorname{im} \mathcal{H}(X_1,X_2).$$

For $H_0 \in \mathfrak{h}$ we consider the adjoint orbit:

$$Y = \mathcal{O}(H_0) = \mathrm{Ad}(G) \cdot H_0 = \{ \mathrm{Ad}(g) \cdot H_0 \in \mathfrak{g} : g \in G \},\$$

together with the symplectic form ω .

イヨト・イヨト

Theorem (G., Grama, San Martin) Given $H_0 \in \mathfrak{h}$ and $H \in \mathfrak{h}_{\mathbb{R}}$ with H a regular element. The "height function" $f_H : (\mathcal{O}(H_0), \omega) \to \mathbb{C}$ defined by

 $f_{H}(x) = \langle H, x \rangle$ $x \in \mathcal{O}(H_{0})$

has a finite number of isolated singularities and defines a symplectic Lefschetz fibration.

A E • A E •

Lemma

x is a critical point for f_H if and only if $x \in \mathcal{O}(H_0) \cap \mathfrak{h} = \mathcal{W} \cdot H_0$, where \mathcal{W} is the Weyl group.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $K \subset G$ compact, and $\mathbb{F}_0 := \operatorname{Ad}(K) \cdot H_0$ the flag manifold.

回トメミトメミト

Let $K \subset G$ compact, and $\mathbb{F}_0 := \operatorname{Ad}(K) \cdot H_0$ the flag manifold.

Theorem (G., Grama, San Martin)

There is a \mathbb{C}^{∞} isomorphism $\iota \colon \mathrm{Ad}\,(G) \cdot H_0 \to T^*\mathbb{F}_0$ such that

- 1. ι is equivariant with respect to the action of K.
- 2. The pullback of the canonical symplectic form on $T^*\mathbb{F}_0$ by ι is the (real) Kirillov–Kostant–Souriau form on the orbit.

A B K A B K

Corollary

The homology of a regular fibre coincides with the homology of $\mathbb{F}_0 \setminus \mathcal{W} \cdot H_0$. In particular the middle Betti number is k - 1 where k is the number of singularities of the fibration (equal the number of elements in $\mathcal{W} \cdot H_0$).

A E F A E F

Notation: LG(*n*) denotes the Landau–Ginzburg model defined over the minimal semisimple adjoint orbit of $\mathfrak{sl}(n, \mathbb{C})$.

Theorem (Ballico, G., Rubilar, San Martin) LG(n) satisfies the KKP conjecture.

イヨト・イヨト

Notation: LG(*n*) denotes the Landau–Ginzburg model defined over the minimal semisimple adjoint orbit of $\mathfrak{sl}(n, \mathbb{C})$.

Theorem (Ballico, G., Rubilar, San Martin) LG(n) satisfies the KKP conjecture.

Theorem (Lunts, Przyjalkowski) The KKP conjecture fails in dimension 2.

A category whose Lagrangian thimbles associated to the vanishing cycles.

(1日) (1日) (日)

Ξ

Vanishing cycle and thimble

・ロト ・回ト ・ヨト ・ヨト

Ξ

Vanishing cycle in Physics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Э

Definition

The category of vanishing cycles $Lag(Y, w, \gamma_i)$ is an A_{∞} -category which objects L_0, \ldots, L_r corresponding to the thimbles. The morphisms between the objects are given by

$$\operatorname{Hom}(L_i, L_j) = \begin{cases} CF^*(L_i, L_j; R) = R^{[L_i \cap L_j]} & \text{if } i < j \\ R \cdot id & \text{if } i = j \\ 0 & \text{if } i > j \end{cases}$$

The differential m_1 , composition m_2 and higher order products M_k are defined in terms of Lagrangian Floer homology.

・ 同 ト ・ ヨ ト ・ ヨ ト …

イロト イロト イヨト イヨト 三日

Define the Hamiltonian action

$$\mu\colon T^*\mathbb{S}^n\to\mathbb{R}$$
$$(q,p)\mapsto |p|,$$

which is smooth outside the zero section, and use a bump function $r: \mathbb{R} \to \mathbb{R}$ to obtain the smooth Dehn twist

$$\tau(x) := e^{i2\pi r'(\mu)} \cdot x.$$

▶ < E > < E > ...

The Fibre $F_0 := T^*_{(0,0,1)} \mathbb{S}^2$

Figure: The Lagrangian $F_0 := T^*_{(0,0,1)} \mathbb{S}^2$.

イロト 人間 トイヨト イヨト

Ξ

The Hamiltonian deformation of F_0

Figure: The deformation $\varphi_t(F_0)$ of the Lagrangian F_0 .

(日) (日) (日)

臣
The Dehn Twist F_1 of F_0

Figure: The Dehn twist $F_1 := \tau(F_0)$ obtained using the map $r(t) := \frac{-\sqrt{t^2+\varphi(t)}+t}{2}$.

・ロト ・回ト ・ヨト ・ヨト

Ξ

Hamiltonian deformation of F_1

Figure: The deformation of the Dehn twist: $\varphi_t(F_1)$.

・ロト ・回ト ・ヨト ・ヨト

Ξ

Floer homology $HF(F_1, F_0)$

Figure: Intersecting F_0 with $\varphi_t(F_1)$.

イロト イヨト イヨト イヨト

臣

Floer homology $HF(\overline{F_0, F_1})$

Figure: Intersecting F_1 with $\varphi_t(F_0)$.

Elizabeth Gasparim Mirror Symmetry for Adjoint Orbits

・ロト ・回ト ・ヨト ・ヨト

Ξ

Choose in $\mathfrak{sl}(2,\mathbb{C})$ the elements

$$H = H_0 = \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight).$$

► Hence O₂ is the set of matrices in sl(2, C) with eigenvalues ±1.

同下 イヨト イヨト

Choose in $\mathfrak{sl}(2,\mathbb{C})$ the elements

$$H=H_0=\left(\begin{array}{cc}1&0\\0&-1\end{array}\right).$$

- ► Hence O₂ is the set of matrices in sl(2, C) with eigenvalues ±1.
- ▶ O₂ forms a submanifold of sl(2, C) of real dimension 4 (a complex surface).

Choose in $\mathfrak{sl}(2,\mathbb{C})$ the elements

$$H=H_0=\left(\begin{array}{cc}1&0\\0&-1\end{array}\right).$$

- ► Hence O₂ is the set of matrices in sl(2, C) with eigenvalues ±1.
- ▶ O₂ forms a submanifold of sl(2, C) of real dimension 4 (a complex surface).
- In this case the Weyl group is $W = \{\pm 1\}$.

▶ ★ E ▶ ★ E ▶

Choose in $\mathfrak{sl}(2,\mathbb{C})$ the elements

$$H=H_0=\left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right).$$

- ► Hence O₂ is the set of matrices in sl(2, C) with eigenvalues ±1.
- ▶ O₂ forms a submanifold of \$(2, ℂ) of real dimension 4 (a complex surface).
- In this case the Weyl group is $W = \{\pm 1\}$.
- ► Therefore, the potential f_H =: O₂ → C has two singularities, namely ±H₀.

(日本)(日本)(日本)

Choose in $\mathfrak{sl}(2,\mathbb{C})$ the elements

$$H=H_0=\left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right).$$

- ► Hence O₂ is the set of matrices in sl(2, C) with eigenvalues ±1.
- ▶ O₂ forms a submanifold of \$(2, ℂ) of real dimension 4 (a complex surface).
- In this case the Weyl group is $W = \{\pm 1\}$.
- ► Therefore, the potential f_H =: O₂ → C has two singularities, namely ±H₀.

(日本)(日本)(日本)

Lemma

The Fukaya–Seidel category Fuk(LG(2)) is generated by two Lagrangians L_0 and L_1 with morphisms:

$$\operatorname{Hom}(L_i, L_j) \simeq \begin{cases} \mathbb{Z} \oplus \mathbb{Z}[-1] & i < j \\ \mathbb{Z} & i = j \\ 0 & i > j \end{cases}$$
(1)

where we think of \mathbb{Z} as a complex concentrated in degree 0 and $\mathbb{Z}[-1]$ as its shift, concentrated in degree 1, and the products m_k all vanish except for $m_2(\cdot, \mathbf{I})$ and $m_2(\mathbf{I}, \cdot)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Ballico, Barmeier, G., Grama, San Martin)

► LG(2) has no projective mirrors.

<回と < 回と < 回と

臣

Theorem (Ballico, Barmeier, G., Grama, San Martin)

- ► LG(2) has no projective mirrors.
- $\overline{LG(2)}$ has no projective mirrors.

Theorem (Ballico, Barmeier, G. , Grama, San Martin)

- ► LG(2) has no projective mirrors.
- $\overline{LG(2)}$ has no projective mirrors.

This means:

For any projective variety X we have

 $D^bCoh(X) \neq Fuk(LG(2))$

イヨトイヨト

Homological Mirror Match: A1-0B (first half)

Elizabeth Gasparim Mirror Symmetry for Adjoint Orbits

Some Deformation Theory:

The adjoint orbit $Ad(G)H_0$ can be obtained as a deformation of the complex structure of the cotangent bundle of the flag manifold $Ad(K)H_0$.

Example $T^*\mathbb{P}^1$ deforms to \mathcal{O}_2 and $T^*\mathbb{P}^1$ is toric.

(日本)(日本)(日本)

3

イロト イヨト イヨト イヨト

臣

Example

 $T^*\mathbb{P}^1$ with the potential $x + y + \frac{y^2}{x}$ is mirror to itself.

This self-dual toric LG model deforms to LG(2) which is not toric.

For every LG model (Y, f) there exists an LG model (X, g) such that

 $Fuk(Y, f) = D_{Sg}(X, g)$

where $D_{Sg}(X,g)$ is the Orlov category of singularities.

不得下 イヨト イヨト 二日

$$D_{Sg}(X,g) := \bigoplus_{i} \frac{D^{b}Coh(X_{i})}{\operatorname{\mathfrak{Perf}}(X_{i})}$$

where X_i are the critical fibers of g and perfect complexes are (quasi-isomorphic to):

$$0 \rightarrow E_1 \rightarrow E_2 \rightarrow \cdots \rightarrow E_n \rightarrow 0$$

where E_i are locally free.

A B N A B N

- Fit the LG model inside a log Calabi-Yau pair.
- Compute the intersection complex for the dual pair.
- Construct Theta functions.
- Compute punctured Gromov–Witten invariants.

→ ∃ →

The Landau–Ginzburg model $LG^{\vee}(2)$ mirror to LG(2) obtained using the Gross–Siebert program is: $LG^{\vee}(2) := (X_2, g = y)$ where $X_2 \subset \mathbb{C} \times \mathbb{C}^* \times \mathbb{P}^1$ is given by the equation:

$$uy = v(x+1+1/x).$$

Theorem (Mirror Symmetry for LG(2)) There is an equivalence of categories:

 $D_{Sg} LG^{\vee}(2) \simeq Fuk(LG(2)).$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

◆□→ ◆□→ ◆注→ ◆注→ □注

Homological Mirror Match: A1-1B (second half)

Theorem (Mirror candidate for LG(n))

The intrinsic mirror symmetry algorithm produces an $\operatorname{LG-model}$ $\operatorname{LG}^{\vee}(n)$ for which

 $Fuk(LG(n)) \simeq D_{Sg}LG^{\vee}(n)$

is a 1-1 correspondence.

A B K A B K

The sums of critical points is represented in the following picture:

⇒ ⊳

Future degenerations

Elizabeth Gasparim

Definition For an integers k > 0 we set

$$W_k = \operatorname{Tot}(\mathcal{O}_{\mathbb{P}^1}(-k) \oplus \mathcal{O}_{\mathbb{P}^1}(k-2)).$$

・ロト ・回ト ・ヨト ・ヨト

臣

The space of all holomorphic bivector fields on W_1 has the following structure as a module over global functions:

$$\langle e_1, e_2, e_3, e_4 \rangle / \langle -zu_2e_1 + zu_1e_2 + u_2e_3 - u_1e_4 \rangle$$
.

Here:

$$e_1 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, e_2 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, e_3 = \begin{bmatrix} u_1\\z\\0 \end{bmatrix}, e_4 = \begin{bmatrix} u_2\\0\\z \end{bmatrix}$$

For example: $e_3 = u_1 \partial_{u_1} \wedge \partial_{u_2} + z \partial_{u_2} \wedge \partial_z$.

• • = • • = • •

The Poisson structures e_1, e_2, e_3, e_4 are all pairwise isomorphic.

 W_1 Poisson structures

$$\begin{array}{c|c} \pi & \text{degeneracy} & \text{Casimir} \\ \hline e_1 & \longrightarrow & f(u_2) \end{array}$$

In the case of threefolds, the degeneracy locus is formed by leaves consisting of a single point each, and all other leaves have complex dimension 2.

The space of holomorphic bivector fields on W_2 has the following structure as a module over global holomorphic functions:

$$\langle e_1, e_2, e_3, e_4, e_5 \rangle / \langle u_1 e_3 - z u_1 e_1, u_2 e_5 - z u_2 e_3 - 2 z u_2 e_2 \rangle$$
.

Here:

$$e_1 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, e_2 = \begin{bmatrix} u_1\\0\\0 \end{bmatrix}, e_3 = \begin{bmatrix} 0\\z\\0 \end{bmatrix}, e_4 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, e_5 = \begin{bmatrix} 2zu_1\\z^2\\0 \end{bmatrix}$$
,

and e_1 and e_5 determine isomorphic Poisson structures.

• • = • • = • •

W_2 Poisson structures

π	degeneracy	Casimir
e_1	·	$f(u_1)$
e ₂		<i>f</i> (<i>z</i>)
e ₃		$f(u_1)$
e ₄	Ø	$f(u_2)$

・ロト ・四ト ・ヨト ・ヨト

Ξ

The space of holomorphic bivector fields on W_3 has the following structure as a module over global holomorphic functions:

 $\mathbb{C}\langle e_1,\ldots,e_{13}\rangle/R$

with the set of relations *R* is the ideal generated by the expressions $u_1e_2 - u_1u_2e_1$ $zu_1e_{13} - u_1u_2e_8$ $u_1e_8 - zu_1e_7$ $u_1e_{10} - u_1u_2e_3$ $u_1e_{11} - zu_1e_{10}$ $u_1e_6 - zu_1e_5 - 3z^2u_1e_1$ $u_1e_{13} - u_1u_2e_7$ $u_1e_4 - zu_1e_3$ $u_1e_9 - zu_1e_8 + zu_1e_2$ $zu_1e_{12} - u_1u_2e_6$ $u_1e_5 - zu_1e_4$ $u_1e_{12} - zu_1e_{11} - 3zu_1e_1$.

イロト 不得 トイヨト イヨト 二日

Degeneracy loci on W_3

・ロト ・回ト ・ヨト ・ヨト

Ξ

Degeneracy loci on W_3

Elizabeth Gasparim Mirror Symmetry for Adjoint Orbits

・ロト ・回ト ・ヨト ・ヨト

Ξ

Degeneracy loci on W_3

Happy 60th Birthday Michel Van den Bergh

< □ > < □ > < □ > < Ξ > < Ξ >

Elizabeth Gasparim Mirror Symmetry for Adjoint Orbits